tzkr.net
当前位置:首页 >> 斐波那契数列的应用 >>

斐波那契数列的应用

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果.可以应用于现实问题的解决研究

【该数列有很多奇妙的属性】[编辑本段]比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887…… 还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1.

斐波那契数列与黄金分割关系黄金分割是我们在生活中接触得比较多的数学美学问题,有了它生活的色彩就更显多彩:建筑师们早就懂得使用黄金分割比了.在公元前3000年建成的埃及法老胡夫的金字塔和公元前432年建成的雅典帕

这个东西在数学建模上可能会有应用,在自然科学的其他分支,也有许多应用.例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝.所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;

“斐波那契数列”的发明者,是意大利数学家列昂纳多斐波那契(Leonardo Fibonacci,生于公元1170年,籍贯大概是比萨,卒于1240年后).他还被人称作“比萨的列昂纳多”.1202年,他撰写了《珠算原理》(Liber Abaci)一书.他是

斐波那契数列的发明者,是意大利数学家列昂纳多斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨).他被人称作“比萨的列昂纳多”.1202年,他撰写了《珠算原理》(Liber Abacci)一书.他是第一个研

斐波那契数列在自然科学的其他分支,也有许多应用.例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝.所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”.这样,一株树木各个年份的枝桠数,便构成斐波那契数列.这个规律,就是生物学上著名的“鲁德维格定律”. 另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……

一、斐波那契的生活应用:1、斐波那契数列中的斐波那契数会经常出现在生活中,比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣)、蜂巢、蜻蜓翅膀、超越数e(可以推出更多)、黄金矩形、黄金分割、等角螺线、十

众所周知,数列是数学知识中的一个重要环节,以具体问题为基础,进行答案的解析是数列学习中的一个重要部分,这就注定了数列是以解决实际问题为目的而存在的.数列在经济生活和资源计算等领域,有着广泛的使用,在解决投资分配、汇

网站首页 | 网站地图
All rights reserved Powered by www.tzkr.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com